Approximate solutions for factored Dec-POMDPs with many agents

نویسندگان

  • Frans A. Oliehoek
  • Shimon Whiteson
  • Matthijs T. J. Spaan
چکیده

Dec-POMDPs are a powerful framework for planning in multiagent systems, but are provably intractable to solve. Despite recent work on scaling to more agents by exploiting weak couplings in factored models, scalability for unrestricted subclasses remains limited. This paper proposes a factored forward-sweep policy computation method that tackles the stages of the problem one by one, exploiting weakly coupled structure at each of these stages. To enable the method to scale to many agents, we propose a set of approximations: approximation of stages using a sparse interaction structure, bootstrapping off smaller tasks to compute heuristic payoff functions, and employing approximate inference to estimate required probabilities at each stage and to compute the best decision rules. An empirical evaluation shows that the loss in solution quality due to these approximations is small and that the proposed method achieves unprecedented scalability, solving Dec-POMDPs with hundreds of agents.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximate Solutions for Factored Dec-POMDPs with Many Agents — Extended Abstract1

Dec-POMDPs are a powerful framework for planning in multiagent systems, but are provably intractable to solve. This paper proposes a factored forward-sweep policy computation method that tackles the stages of the problem one by one, exploiting weakly coupled structure at each of these stages. An empirical evaluation shows that the loss in solution quality due to these approximations is small an...

متن کامل

Approximate Solutions for Factored Dec-POMDPs with Many Agents1

Dec-POMDPs are a powerful framework for planning in multiagent systems, but are provably intractable to solve. This paper proposes a factored forward-sweep policy computation method that tackles the stages of the problem one by one, exploiting weakly coupled structure at each of these stages. An empirical evaluation shows that the loss in solution quality due to these approximations is small an...

متن کامل

Efficient Planning for Factored Infinite-Horizon DEC-POMDPs

Decentralized partially observable Markov decision processes (DEC-POMDPs) are used to plan policies for multiple agents that must maximize a joint reward function but do not communicate with each other. The agents act under uncertainty about each other and the environment. This planning task arises in optimization of wireless networks, and other scenarios where communication between agents is r...

متن کامل

Planning under uncertainty for large-scale problems with applications to wireless networking ; Päätöksenteko epävarmuuden vallitessa suurissa ongelmissa ja sovelluksia langattomaan tiedonsiirtoon

Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi Author Joni Pajarinen Name of the doctoral dissertation Planning under uncertainty for large-scale problems with applications to wireless networking Publisher School of Science Unit Department of Information and Computer Science Series Aalto University publication series DOCTORAL DISSERTATIONS 20/2013 Field of research Computer and I...

متن کامل

Factored Upper Bounds for Multiagent Planning Problems under Uncertainty with Non-Factored Value Functions

Nowadays, multiagent planning under uncertainty scales to tens or even hundreds of agents. However, current methods either are restricted to problems with factored value functions, or provide solutions without any guarantees on quality. Methods in the former category typically build on heuristic search using upper bounds on the value function. Unfortunately, no techniques exist to compute such ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013